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Abstract

This paper is concerned with objective stress update algorithm for elasto-plastic and elasto-viscoplastic endochronic

theory within the framework of additive plasticity. The elastic response is stated in terms of hypoelastic model and

endochronic constitutive equations are stated in unrotated frame of reference. A trivially incrementally objective in-

tegration scheme for rate constitutive equations is established. Algorithmic modulus consistent with numerical inte-

gration algorithm of constitutive equations is extracted. The implementation is validated by means of a set of simple

deformation paths (simple shear, extension and rotation), two benchmark test in nonlinear mechanics (the necking of a

circular bar and expansion of a thick-walled cylinder), a test which demonstrates the capabilities of the proposed model

in simulation of cyclic loading and ratcheting in finite strain case (cyclically loaded notched bar) and finally, the analysis

of a tensile test, which presents a shear band with a finite thickness independent of the finite element mesh using endo-

chronic viscoplastic constitutive model.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The main objective of this paper is the formulation and integration of the endochronic constitutive

equations for finite deformation metal plasticity and viscoplasticity. The endochronic theory deals with the

plastic response of materials by means of memory integrals, expressed in terms of memory kernels. For-
mulation of this theory is based on thermo dynamical concepts and provides a unified point of view to

describe the elastic–plastic behavior of material, since it places no requirement for a yield surface and

�loading function� to distinguish between loading and unloading. A key ingredient of the theory is that the

deformation history is defined with respect to a deformation memory scale called intrinsic time. In the
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original version of the endochronic theory, proposed by Valanis (1971a,b), the intrinsic time was defined as

the path length in the total strain space. The so-called endochronic theory violates the second law of

thermodynamics and leads to constitutive relations, which characterize inherently unstable materials

(Rivlin, 1981; Sandler, 1978). Aiming at the correction of this deficiency, a new version of the endochronic
theory was developed by Valanis (1980) in which the intrinsic time was defined as the path length in the

plastic strain space. The new endochronic plasticity was capable of predicting a stress-response to defor-

mation processes, including reversal points in loading in agreement with the experimentally observed

mechanical behavior of metals. Also, Valanis demonstrated that an introduction of Dirac delta function

into the kernel function leads to a derived result of a yield surface and classical plasticity models of isotropic

and kinematic hardening could be derived as a special case of the endochronic theory (Valanis, 1980).

Using original endochronic theory, as a point of departure, a method of extending endochronic theory to

concrete, clay and sand was proposed by Bazant and his coworkers (Bazant and Krizek, 1976; Bazant and
Bhat, 1976; Bazant et al., 1979) by introducing sensitivity of intrinsic time to hydrostatic pressure and

incorporating inelastic dilatancy due to shear strain. But the proposed approach has shortcomings of the

original endochronic theory mentioned above. An extension of the new endochronic theory to concrete and

sand was proposed by Valanis et al. (Valanis and Read, 1986; Valanis and Peters, 1991) and Wu et al.

(1985). Recently, Khoei and Bakhshiani (2001) and Khoei et al. (2002) developed an endochronic theory to

describe the behavior of metal powder in powder compaction processes.

The first implementation of an endochronic theory into a multi-dimensional finite element code was

made by Lin et al. (1981), who focused on the original endochronic theory with one term exponential for
the kernel function. An implicit finite element algorithm for the modern version of endochronic theory

without a yield surface was developed by Valanis and Fan (1984), which was incrementally nonlinear. Also,

Watanbe and Atluri (1985) presented an implicit finite element algorithm for the modern endochronic

theory. They used the endochronic plasticity with yield surface and the resulting constitutive equations were

incrementally linear. An unconditional stable integration scheme of endochronic constitutive equations was

proposed by Hsu et al. (1991) and Hsu and Griffin (1992) and its ability is examined in the modeling of

random non proportional tests on OFHC copper. Hsu and Griffin (1996) implemented radial return al-

gorithm in integration of endochronic constitutive equations and applied their formulation to finite element
micromechanics modeling of a unidirectional metal matrix composite subjected to nonproportional cyclic

loading.

The endochronic theory has also been extended to investigate the rate dependent behavior of materials.

Lin and Wu (1976) used original version of the endochronic theory and introduced a rate sensitivity

function, which was a function of total strain rate. Wu and Yip (1980) redefined the rate sensitivity function

of intrinsic time measure based on the new intrinsic time proposed by Valanis (1980) and discussed the

uniaxial stress–strain responses of 1100-O aluminum and mild steel at constant strain rate conditions. Wu

and Ho (1995) introduced another functional form for dependency of intrinsic time scale to the equivalent
deviatoric plastic strain rate and applied endochronic theory to investigate transient creep of material. A

new formulation of the rate sensitivity function was proposed by Pan and Chern (1997) to describe the

viscoplastic behavior of material subjected to multiaxial loading. Pan (1997) modified the rate sensitivity

function proposed by Pan and Chern (1997) and Pan et al. (1996) to incorporate with the finite endochronic

constitutive equations. For the case of study, the finite simple torsion of iron and nickle thin-walled tubes

were simulated with explicit constitutive equations. Pan et al. (1999) proposed a different formulation of the

scaling function of the intrinsic time measure, as suggested originally by Valanis (1975), to describe the

material behavior under rate dependent elastoplastic deformation. They used the differential endochronic
constitutive equations derived by Valanis (1984) to describe the material responses subjected to rate de-

pendent elastoplastic deformation.

The endochronic theory was extended to finite deformation with the concept of the corotational rate and

plastic spin by Im and Atluri (1987). They derived the governing equations by using the isoclinic configu-
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ration as the intermediate configuration and the corresponding second Piola-Kirchhoff stress tensor. Cases

of finite uniaxial compression and torsion were discussed in their work. Wu et al. (1995) incorporated the

concepts of corotational rate, corotational integral and plastic spin to endochronic theory and applied it to

description of rigid-plastic deformation in thin-walled tubes subjected to finite torsion. Pan et al. (1996)
extended the ordinary differential constitutive equations of endochronic theory to simulate elastoplastic

deformation in the range of finite strain using the concept of corotational rate. Different objective rates

were incorporated into the theory and cases involving metal tubes under torsion and metal rectangular

block under biaxial compression were discussed. Recently, an endochronic plasticity theory was developed

by Khoei et al. (2003a) and Bakhshiani et al. (2003) to describe the large deformation in finite strain using

the concepts of corotational stress rate and the additive decomposition of deformation rate. They derived

the constitutive equations for thin-walled tube under torsion to simulate the axial effects for various

materials subjected to simple and pure torsional loading. More recently, Bakhshiani et al. (2002a,b) and
Khoei et al. (2003b,c) developed a density-dependent endochronic theory based on coupling between de-

viatoric and hydrostatic behavior in finite strain plasticity to simulate the compaction process of powder

material.

In this paper, the infinitesimal theory of endochronic plasticity is extended to large strain range on the

basis of the additive decomposition of the strain rate tensor and hypoelasticity. This approach is rather

different with respect to the multiplicative decomposition of the deformation gradient, which is based on the

work of Lee (1969) and used in numerous recent papers (Simo, 1988a,b; Eterovic and Bathe, 1990; Eve and

Reddy, 1994; Fish and Shek, 2000; Ibrahimbegovic and Chorfi, 2000; Ponthot, 2002). The proposed in-
tegration algorithm treats the elastoplastic and the elasto-viscoplatic cases in a unified way. Constitutive

equations are stated in unrotated frame of reference that greatly simplifies endochronic constitutive rela-

tions in finite plasticity and yields the efficiency of the presented algorithm by total uncoupling material and

geometrical non linearities. An implicit scheme is employed in this article which is the efficient method for

the type of nonlinear problems considered in this paper (Ponthot, 2002; Simo, 1988b). An integration

scheme, which is accurate, stable and amenable to consistent linearization, is developed. Although the

major challenge in the integration of rate constitutive equations in large deformation analysis is to achieve

incremental objectivity, it has been trivially achieved in the proposed algorithm. Algorithmic modulus
consistent with numerical integration of constitutive equations for endochronic theory is extracted.

The implementation of consistent modulus in global tangent stiffness matrix is essential in preserving

the quadratic rate of convergence of Newoton procedure in solving the equilibrium equations (Simo

and Taylor, 1985). The efficiency of the proposed constitutive model and computational algorithms is

demonstrated by several numerical examples.

This paper is organized as follows: in Section 2, we describe the endochronic plasticity model. In Section

3, the implementation of endochronic plasticity model in large deformation is introduced. Section 4 is

devoted to numerical integration of constitutive equations. In Section 5, the consistent tangent modulus,
which has an important role in the convergence rate of global nonlinear system of equations, is extracted.

Section 6 is devoted to the assessment of the model and computational procedure. Finally, some concluding

remarks are made in Section 7.

2. Endochronic constitutive model

Constitutive equations of the endochronic theory for rate-dependent, plastically incompressible, initially
isotropic material is as follows:

rdev ¼ 2

Z z

0

Uðz� z0Þ de
p

dz0
dz0 ð1Þ
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where UðzÞ is material function, called hereditary function. A time scale �1� is introduced which is inde-

pendent of elapsed time, but intrinsically dependent on the deformation of material. It is through this

parameter that history effects are introduced into constitutive equations of endochronic theory.

d12 ¼ dep : dep ð2Þ

dz ¼ d1
f ð1; _11Þ ð3Þ

where f ð1; _11Þ denotes a material function, called scale function, which is a function of time scale 1, and its

rate _11. In order to describe the viscoplastic material behavior, the rate sensitivity is introduced in scale

function through rate of time scale. It should be mentioned that the so-called consistency viscoplastic model

(Wang et al., 1997) can be derived as special case of the proposed model by introducing Dirac delta

function to the hereditary function.

In above equations, the total stress tensor is denoted by r and its deviatoric and hydrostatic parts by rdev

and rh, respectively. The symbol e represent the total strain tensor by deviatoric and volumetric parts edev
and evol, respectively. The superscripts �e� and �p� indicate the elastic and plastic components, respectively.

As shown by Valanis (1980), the kernel function UðzÞ can be expressed in terms of a Dirichlet series, i.e.,

UðzÞ ¼
X1
r¼1

Are
�arz ð4Þ

with the requirements that Ar and ar are nonnegative for all values of �r�, and the condition,X1
r¼1

Ar

ar
< 1 ð5Þ

This condition ensures the integrability of UðzÞ over a finite domain of time scale �z�. In numerical appli-

cation, m-term Dirichlet series can be used as, (Hsu et al., 1991)

UðzÞ ¼
Xm
r¼1

Are
�arz ð6Þ

The role of scale function f ð1; _11Þ is crucial in the behavior of model. By scaling intrinsic time, this function

causes hardening or softening plastic behavior as functions of time scale and its rate.
Although the yield surface has not been explicitly assumed in the endochronic theory, introducing Dirac

delta to kernel functions, results implicitly this concept (Valanis, 1980). The above endochronic model

contains various isotropic and kinematic hardening rules for special cases (Watanbe and Atluri, 1986),

depending on the choice of the scale function f ð1; _11Þ and the kernel UðzÞ. Prager�s linear kinematic hard-
ening rule can be obtained if Dirac delta function and one constant term are used in kernel function. In-

troducing another exponential term to the kernel function results in the Armstrong and Frederick nonlinear

kinematic hardening rule.

3. Implementation in large deformation

In finite deformation plasticity, there are generally two approaches. The first class of methods is based on

hyperelastic–plastic relations, multiplicative elastic–plastic kinematics and the existence of Helmholtz free

energy density governed by either elastoplastic deformation (Nemat-Nasser, 1979; Simo, 1988a), or elastic

deformation solely (Eve and Reddy, 1994). The second class of methods is based on hypoelastic–plastic

relations, additive decomposition of rate of deformation and the use of objective stress rates. Even though
this formulation is very attractive from the computational point of view (Belytschko, 1983; Ponthot, 2002),
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it is limited to small elastic strain in which the hypothesis of hypoelasticity is valid. This approach is ap-

propriate for most engineering materials, including metals, where elastic strain remains small.

In this section, the hypoelasto-plastic formulation is presented in the context of finite deformation

problem involving large strain. The constitutive model is stated in the unrotated frame of reference
(Johnson and Bammann, 1984; Fish and Shek, 2000; Ponthot, 2002), in which it is simple to achieve in-

cremental objectivity and also in the unrotated reference frame all constitutive models are cast regardless of

finite rotations. This greatly simplifies the numerical implementation of endochronic constitutive model.

3.1. Kinematics

A material point in reference configuration X0 with position vector X occupies position x at time t in
deformed configuration X. So we have x ¼ uðX ; tÞ. The motion from the original configuration to the

deformed configuration has the deformation gradient F given by

F ¼ ox
oX

ð7Þ

Applying polar decomposition theorem to F

F ¼ VR ¼ RU ð8Þ

where V and U are the left and right symmetric, positive definite stretch tensors, respectively, and R is a

proper orthogonal tensor. The velocity gradient is denoted by L and may be expressed as

L ¼ ov
ox

¼ _FFF�1 ð9Þ

v ¼ duðX ; tÞ
dt

ð10Þ

The velocity gradient can be written in terms of symmetric D and antisymmetric W parts, respectively,

called rate of deformation ant spin tensors, as

L ¼ DþW ð11Þ
The unrotated rate of deformation tensor used in the next sections is defined as,bDD ¼ RTDR ð12Þ
The finite elastoplastic kinematics, which we use in this study, is based on additive decomposition of rate of

deformation as (Nemat-Nasser, 1982),

D ¼ De þDp ð13Þ
or in unrotated frame as,bDD ¼ bDDe þ bDDp ð14Þ

3.2. Hypoelastic–viscoplastic constitutive equations

Hypoelastic material law relates the rate of stress to the rate of deformation. A general form of the
hypoelastic relation is given by

rr ¼ f ðr;DÞ ð15Þ
where rr represents any objective rate of Cauchy stress.
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In literature many objective rates are introduced, such as: Jaumann, Truesdell and Green-Naghdi rates.

Dienes (1979) has shown that there is spurious oscillation in the stress, which arises directly from the nature

of the Jaumann rate. Vanishing of Truesdell rate does not ensure that the invariants of Cauchy stress tensor

are constant (Johnson and Bammann, 1984), so in this case further plastic flow will exist. In this formu-
lation, the constitutive model is posed in terms of Cauchy stress in unrotated configuration (Johnson and

Bammann, 1984), as

r̂r ¼ RTrR ð16Þ

The conjugate strain rate to r̂r is bDD defined in Eq. (12). So the hypoelastic part of constitutive equation is

_̂rr̂rr ¼ C e : bDDe ð17Þ

bDD ¼ bDDe þ bDDp ð18Þ
where C e is the Hook stress–strain tensor given as

C e
ijkl ¼ Kdijdkl þ 2l dikdjl

�
� 1

3
dijdkl

�
ð19Þ

where K and l are the bulk and shear modulus of material, respectively.

In order to complete the hypoelasto-viscoplastic constitutive equation in the context of finite defor-

mation plasticity, the endochronic constitutive equations in unrotated frame is presented as follows:

r̂rdev ¼ 2

Z z

0

Uðz� z0Þ
bDDp

_zz0
dz0 ð20Þ

_zz ¼ _11
f ð1; _11Þ ð21Þ

_112 ¼ bDDp : bDDp ð22Þ
where

r̂r ¼ r̂rdev þ r̂rhI ð23Þ

r̂rdev ¼ dev½r̂r
 ð24Þ

r̂rh ¼ 1
3
tr½r̂r
 ð25Þ

and dev½�
 ¼ ½�
 � 1
3
tr½:
I with I as spatial metric tensor.

4. Numerical integration of constitutive equations

The major challenge in the integration of the rate constitutive equations in finite strain context is to

achieve incremental objectivity. Using objective stress rates in constitutive equations results in objective

formulation only in the limit of very small time step (Hughes and Winget, 1980). While the standard time

discretization procedures do not lead in incremental objectivity, one efficient way to overcome this problem

is to state constitutive equations in corotational frame. Assuming that the variables of the model at step n
and the incremental displacement field Du ¼ nþ1x� nx at load step nþ 1 are known, the update of different
variables of the model at load step nþ 1 is done as described. The left superscript refers to load step.

Subsequently, the left superscript is omitted for current step.
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Using polar decomposition F ¼ RU, relations (9) and (12) leads tobDD ¼ RTDR ¼ 1
2
ð _UUU�1 þU�1 _UUÞ ð26Þ

Midpoint rule results to

bDDDt ¼ 1
2
ðDU nþ1

2U�1 þ nþ1
2U�1DUÞ ð27Þ

where DU and nþ1
2U in the above relation are

DU ¼ nþ1U� nU ð28Þ

nþ1
2U ¼ 1

2
ðnþ1Uþ nUÞ ð29Þ

The corotational increment of D is given as,

Dd̂d ¼ Dt bDD ¼ 1
2
ðDU nþ1

2U�1 þ nþ1
2U�1DUÞ ð30Þ

Applying the backward Euler scheme to Eq. (17) yields

r̂r ¼ nr̂r þ C e : bDDeDt ð31Þ

Dr̂r ¼ C e : Dd̂de ¼ C e : ðDd̂d� Dd̂dpÞ ð32Þ

The other part of numerical scheme is the numerical integration of endochronic constitutive equations.
Substituting Eq. (6) to (20), gives

r̂rdev ¼ 2
Xm
r¼1

Z z

0

Are
�arðz�z0Þ

bDDp

_zz0
dz0 ð33Þ

In order to integrate Eq. (33) numerically, the loading is divided into n steps, thus

r̂rr
devðnzÞ ¼ 2

Xn
k¼1

Ar

ar

kðDd̂dpÞ
kDz

½e�arðnz�k zÞ � e�arðnz�k�1zÞ
 ð34Þ

r̂rdevðnzÞ ¼
Xm
r¼1

r̂rr
devðnzÞ ð35Þ

It is worth mentioning that the striking feature of the above scheme is the direct integration of hereditary

function. Such a procedure, in general leads to more accurate results with much smaller number of in-

crements, and results in an exact solution to endochronic equations, if the material has no hardening effect
and the deformation process traces a piecewise linear path in the plastic strain space (Hsu et al., 1991).

Eq. (34) can be simplified as

r̂rr
devðnzÞ ¼ r̂rr

devðn�1zÞe�arnDz þ 2
Ar

ar

nðDd̂dpÞ
nDz

ð1� e�arnDzÞ ð36Þ

Incremental form of endochronic constitutive equations can be obtained from Eq. (36) by taking step nþ 1

as current step. The incremental equations needed in the numerical modeling of initial strain are as follows

Dr̂rdev ¼
Xm
r¼1

nðr̂rr
devÞðe�arDz � 1Þ þ 2

Dd̂dp

Dz

Xm
r¼1

Ar

ar
ð1� e�arDzÞ ð37Þ
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Dr̂rdev ¼ 2lðDd̂d� Dd̂dpÞ ð38Þ

D12 ¼ Dd̂dp : Dd̂dp ð39Þ

Dz ¼ D1

f n1 þ bD1; D1
Dt

� � ð40Þ

where b is a parameter with the condition b P 1=2. Although this set of six algebraic equations can be

solved for the unknowns ðDd̂dpÞ by applying the Newton–Raphson method, however, more efficient nu-

merical scheme can be devised by making a few algebraic manipulations. Substituting Dr̂rdev from (38) to

(37) yields

2lDd̂d�
Xm
r¼1

nðr̂rr
devÞðe�arDz � 1Þ ¼ 2

Dd̂dp

Dz

Xm
r¼1

Ar

ar
ð1

 
� e�arDzÞ þ lDz

!
ð41Þ

Taking inner product of (41) with itself, results

A : A ¼ B2 D12

Dz2
ð42Þ

where

Aij ¼ lDd̂dij �
1

2

Xm
r¼1

nðr̂rr
devÞijðe�arDz � 1Þ ð43Þ

and

B ¼ lDzþ
Xm
r¼1

Ar

ar
ð1� e�arDzÞ ð44Þ

Substituting (40) into (42) gives

RðD1Þ ¼ A : A� B2f 2 n1

�
þ bD1;

D1
Dt

	
¼ 0 ð45Þ

The above equation can be solved for D1 by the Newton–Raphson technique using the following expression
for derivative of residual with respect to unknown, D1

oR
oD1

¼ 2
oA

oD1
: A� 2fB

oB
oD1

f
�

þ B
of
oD1

	
ð46Þ

oA

oD1
¼ 1

2

oDz
oD1

Xm
r¼1

an
r ðr̂rr

devÞe�arDz ð47Þ

oB
oD1

¼ oDz
oD1

l

 
þ
Xm
r¼1

Cre
�arDz

!
ð48Þ

oDz
oD1

¼ 1

f
� D1

f 2

of
oD1

ð49Þ

of n1 þ bD1; D1
Dt

� �
oD1

¼ b
of
o1

þ 1

Dt
of
o _11

ð50Þ
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Once Eq. (45) is solved for D1, Dz can be obtained from (40) and Dd̂dp from Eq. (41). Then the corotational

increment of stress tensor is derived from Eq. (32). Stress is then calculated from relations r̂r ¼ nr̂r þ Dr̂r and

r ¼ Rr̂rRT.

It can be seen from Eq. (27) that the proposed scheme is trivially incrementally objective. In the case of
rigid body motion, nþ1U ¼ nU and from Eq. (27) bDD ¼ 0, thus stress tensor will be updated exactly by re-

lation nþ1r ¼ DRnrDRT. It should be mentioned that in this scheme the rotation tensor R is exactly

computed from the polar decomposition and not from the numerical integration of rate equation _xx ¼ Xx,
with X denoting a spin tensor and x indicating an orthogonal rotation tensor.

5. Consistent tangent operator

In order to achieve the quadratic rate of convergence of Newton method for solution of global nonlinear

system of equations, it is essential to use tangent modulus consistent with integration procedure of con-

stitutive equations in forming tangent stiffness matrix (Simo and Taylor, 1985). In this section, the incre-

mental constitutive equations derived in previous section are linearized to yield consistent tangent modulus.

Taking material time derivative of Eq. (37) yields

D _̂rr̂rrdev ¼ H1D_zzþ H2D
_̂
dd̂dd
p ð51Þ

where

H1 ¼ 2
Dd̂dp

Dz

Xm
r¼1

Are
�arDz � 2

Dd̂dp

Dz2
Xm
r¼1

Ar

ar
ð1� e�arDzÞ �

Xm
r¼1

ar
nðr̂rr

devÞe�arDz ð52Þ

H2 ¼
2

Dz

Xm
r¼1

Ar

ar
ð1� e�arDzÞ ð53Þ

Taking material time derivative of (40) yields

D_zz ¼ 1

f

�
� D1

f 2
b
of
o1

�
þ 1

Dt
of
o _11

		
D _11 ð54Þ

where D _11 can be obtained by taking time derivative from Eq. (39) which yields,

D _11 ¼ 1

D1
Dd̂dp : D _̂

dd̂dd
p ð55Þ

Substituting Eqs. (54) and (55) to (51) yields

D _̂rr̂rrdev ¼ Cp : D _̂
dd̂dd
p ð56Þ

where

Cp ¼ 1

Dn
1

f

�
� D1

f 2
b
of
o1

�
þ 1

Dt
of
o _11

		
H1 � Ddp þ H2I ð57Þ

Taking time derivative of (23) and using (19), (38) and (56) by straightforward calculation yields,

_̂rr̂rr ¼ C
p
: D _̂
dd̂dd ð58Þ

where

C
p ¼ C e I

 
� 1

2l
Cp

�
þ I

	�1

Idev

!
ð59Þ
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and

Idevijkl ¼ 1
2
ðdikdjl þ dildjkÞ � 1

3
dijdkl ð60Þ

In order to complete derivation of consistent modulus, linearization of nþ1R and Dd̂d is needed. For con-
sistent linearization of nþ1R, we start by relation,

L ¼ _FFF�1 ¼ RRT þ R _UUU�1RT ð61Þ
Pre-multiplying Eq. (61) with RT and post-multiplying with F yields,

RTLF ¼ RT _RRUþ _UU ð62Þ
Subtracting (62) from its transpose after some manipulation results in

_RR ¼ G : L ð63Þ
where

G ijkl ¼ ðRimUjn � RinUjmÞ�1ðRkmFln � RknFlmÞ ð64Þ
Substituting (63) to (62) gives _UU in terms of L as follows,

_UU ¼ H : L ð65Þ
where

H ijkl ¼ ðRkiFlj � RmiUnjGmnklÞ ð66Þ
In order to evaluate D _̂

dd̂dd appearing in Eq. (58) consistent with integration scheme, relation (30) is used,

_̂
dd̂dd ¼ P : nþ1 _UU ð67Þ

where

Pijkl ¼ 1
2
ðnþ

1
2U�1

kj dil þ nþ1
2U�1

ik djl � 1
2
DUim

nþ1
2U�1

mk
nþ1

2U�1
lj � 1

2
DUmj

nþ1
2U�1

ik
nþ1

2U�1
lm Þ ð68Þ

Substituting (65) to (67) yields,

_̂
dd̂dd ¼fHH : L ð69Þ

where fHH is a forth-order tensor given asfHH ¼ P : H ð70Þ
Substituting Eq. (69) into Eq. (58) yields

_̂rr̂rr ¼ C : L ð71Þ
where

C ijkl ¼ C
p

ijmn
fHHmnkl ð72Þ

Combining Eqs. (63) and (71) and _̂rr̂rr ¼ RT _rrRþ _RRTrRþ RTr _RR yields

_rr ¼ eCC : L ð73Þ

where

eCC ijkl ¼ RimCmnklRjn � RimGnmklrnj � rimGmnklRjn ð74Þ
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6. Numerical simulation examples

In this section, several numerical simulations are presented to study the performance of the proposed

formulation. The finite element mesh employed in all simulations is four-node isoparametric elements with
bilinear displacement interpolation and constant pressure to handle the isochoric nature of plastic flow. The

convergence criterion used is based on the relative value of norm of residual forces to norm of applied

forces. Unless otherwise stated, the convergence tolerance is set to 10�4 and b is set to 1=2.

6.1. Simple shear test

The first example is chosen to examine the behavior of model and accuracy of the numerical integration
scheme in the case of large deformation. The problem statement for the simple shear test is shown in Fig. 1.

Both elastic and elastoplastic behaviors are considered. The equations describing the motion of the con-

tinuum are

xðtÞ ¼ X þ Yt

yðtÞ ¼ Y
ð75Þ

Elastic behavior is represented by Young�s modulus of 2000 and Poisson�s coefficient of 0.3. Figs. 2 and 3

present the results for the elastic case. The results of hypoelastic model with Green-Naghdi and Jaumann

rates are also depicted for comparison. Both mid-point and fully implicit algorithms yield to sufficiently

accurate results for shear strain response in relatively large increment (50% shear strain in each increment).
Fully implicit algorithm grossly underestimates rxx component when not enough increments are employed,

and demands a smaller strain increment to get accurate solution.

Endochronic plasticity model with kernel function parameters of C1 ¼ 2000, C2 ¼ 200, r1 ¼ 100, r2 ¼ 10

and scale function of f ð1Þ ¼ 1þ ð1=10Þ is employed for simulation of elastoplastic behavior. Mid-point

numerical integration algorithm is used for this case. Fig. 4 shows shear stress response versus shear strain

for three different time steps. It can be seen from this figure that the proposed integration algorithm results

in acceptable solutions even in the case of large prescribed strain increments. Taking the solution at 5000

time steps, as the exact solution, the error in final shear stress corresponding to shear strain of 5 is com-
puted and plotted versus the number of time increments in Fig. 5. From this figure, the second-order ac-

curacy of the integration algorithm is corroborated.

Fig. 1. Simple shear test; problem statement.
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6.2. Extension and rotation test

In second example, a combined extension and rotation of an element is considered to illustrate the

behavior of the kinematic algorithm and accuracy of the proposed integration scheme in the case of small

deformation combined with large rigid body rotation. This example was made by Rashid (1993) to show

that the algorithm of Hughes and Winget (1980) is the only weakly objective, which can cause unintended

Fig. 2. Simple shear test; the stress component rxy versus shear strain in elastic analysis.

Fig. 3. Simple shear test; the stress component rxx versus shear strain in elastic analysis.

3404 A.R. Khoei et al. / International Journal of Solids and Structures 40 (2003) 3393–3423



coupling between the rotational part of the motion and the stress update, whenever large rotational in-
crements are present. This characteristic can cause inaccurate results in the case of large rotational incre-

ments.

The problem statement for this example is shown in Fig. 6. A unit square simultaneously undergoes a

uniaxial extension of 0.005 and a total superposed rigid rotation of 90�. The equations of motion are

Fig. 4. Simple shear test; the shear stress versus shear strain in elasto-plastic analysis.

Fig. 5. Simple shear test; the error in final value of shear stress versus number of time steps in elasto-plastic analysis.
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xðtÞ ¼ X ð1þ 0:005tÞ cos p
2
t

� 

� Y sin

p
2
t

� 

yðtÞ ¼ X ð1þ 0:005tÞ sin p

2
t

� 

þ Y cos

p
2
t

� 
 ð76Þ

and the analytical solution is

rxx ¼
Et

400ð1� m2Þ ð1þ cos ptÞ

ryy ¼
Et

400ð1� m2Þ ð1� cos ptÞ

rxy ¼
Et

400ð1� m2Þ sin pt

ð77Þ

Fig. 6. Extension and rotation test; problem statement.

Fig. 7. Extension and rotation test; the stress component rxx versus time.
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The material Young�s modulus E is taken as 200 000 and the Poisson�s ratio is 0.2. The elastic behavior is

only parameter considered here. The results of this example are shown in Figs. 7 and 8. It is clear that the

predictions of the proposed algorithm agree with analytical values for large incremental rotation, even up

to 45�.

Fig. 8. Extension and rotation test; the stress component rxy versus time.

Fig. 9. Expansion of a thick-walled cylinder; geometry and initial mesh.

Table 1

Material properties for the thick-walled cylinder

Young�s modulus 11 050 MPa

Poisson�s ratio 0.454

C1 180 000 MPa

C2 90 000 MPa

r1 30 000

r2 10 000

Scale function f ð1Þ ¼ 0:0148
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6.3. Expansion of a thick-walled cylinder

The next example is one of the most popular benchmarks for validating finite plasticity formulation

(Simo, 1988b; Fish and Shek, 2000; Ponthot, 2002). A thick-walled cylinder with an inner radius of 10 units

and an outer radius of 20 units is subjected to internal pressure. This problem is solved using 20 bilinear

axisymmetric elements. The convergence tolerance used for this example is 10�7. Fig. 9 shows the finite

element mesh and configuration of the cylinder. The inner radius is driven to a value of 90 in ten load steps.

The endochronic material parameters, given in Table 1, are chosen to simulate the rigid-plastic behavior

with the yield stress of 0.5 MPa allowing a comparison with analytical solution.

Fig. 10 shows the relationship between the inner radius and internal pressure. The radial stress profile
versus position through current thickness of the cylinder is shown in Fig. 11. It can be seen that the nu-

merical results are in good agreement with the analytical solution. Newton iterations per load step and

Fig. 10. Expansion of a thick-walled cylinder; the internal pressure versus inner radius.

Fig. 11. Expansion of a thick-walled cylinder; the radial stress versus position relative to inner radius corresponding to several con-

figurations.
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values of residual norm during iterations of two typical time steps are given in Tables 2 and 3, respectively,

which demonstrate the quadratic rate of asymptotic convergence.

6.4. Cyclically loaded notched bar

This example is chosen to demonstrate the capabilities of endochronic plasticity in simulation of cyclic
loading and ratcheting. An axisymmetric notched bar is subjected to cyclic displacement and stress load-

ings. The geometry and finite element mesh of the problem are shown in Fig. 12. This example was con-

sidered by Kobayashi and Ohno (2002) to show the behavior of a new form of kinematic hardening

Table 3

Residual norm for load steps 4 and 8, Example 6.3

Iteration Load step 4 Load step 8

1 1.69E+03 3.20E+03

2 2.15E+01 2.43E+01

3 2.54E)01 1.23E)01
4 2.75E)03 6.23E)04
5 2.94E)05 8.37E)08
6 2.47E)08

Table 2

Newton iterations per load step, Example 6.3

Step 1 2 3 4 5–6 7 8–10

Number of iterations 9 8 7 6 5 6 5

Fig. 12. Geometry, finite element mesh and boundary condition of notched bar subjected to cyclic loading.
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Table 4

Material properties for the cyclically loaded notched bar

Young�s modulus 165 000 MPa

Poisson�s ratio 0.3

C1 200 000 MPa

C2 4000 MPa

C3 800 MPa

r1 50 000

r2 1000

r3 50

Scale function f ð1Þ ¼ 35

Fig. 13. Cyclically loaded notched bar; cyclic loading diagram and increment of applied axial stress.

Fig. 14. Notched bar subjected to cyclic stress loading; the axial stress versus strain relation at the integration point near notch root.
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Fig. 15. Cyclically loaded notched bar; cyclic loading diagram and increment of applied axial displacement.

Fig. 16.Notchedbar subjected to cyclic displacement loading; the axial stress versus strain relation at the integrationpoint near notch root.

Table 5

Residual norm-stress loading, Example 6.4

Iteration Last increment of third cycle Tenth increment of fourth cycle First increment of fifth cycle

1 1.64E+1 7.29E+1 2.20E+3

2 6.41E)1 3.83E)3 9.34E+2

3 2.08E)2 2.61E)6 2.70E+0

4 1.12E)4 3.83E)3
5 7.40E)7
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plasticity in small displacement context. Fig. 13 illustrates the variation of applied stress with the number of

cycles. The increment of applied stress is prescribed to allocate ten and fifty steps per half a cycle. Endo-

chronic material parameters used for simulation are given in Table 4. Using a constant scale function

suppresses, the isotropic hardening of model and three terms of kernel function are enough to simulate a
nonlinear kinematic hardening behavior.

Table 6

Residual norm-displacement loading, Example 6.4

Iteration Last increment of third cycle Tenth increment of fourth cycle First increment of fifth cycle

1 1.06E+0 2.15E+0 6.84E+4

2 1.06E)2 1.57E)2 5.68E+2

3 9.45E)5 5.60E)5 6.50E+0

4 1.52E)1
5 1.08E)2
6 1.82E)5

Fig. 17. Necking of a circular bar; problem description.
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Fig. 14 shows the computed axial stress–strain relations at the integration point near the notch root. The

capability of the endochronic model to simulate ratcheting is clear from the figure. Also, using only ten

stress increments gives accurate results for such a complicated loading history. Fig. 15 shows cyclic loading

diagram and the increment of applied displacement at the top of the specimen. Axial stress versus strain
relation at the integration point near notch root is shown in Fig. 16. Similar to the previous loading case,

ten steps loading per half a cycle is sufficient to obtain an accurate result. It is worth mentioning while the

concepts of the yield surface and loading-unloading criteria have not been assumed in the endochronic

plasticity, the model can effectively simulate unloading and cyclic loading. Finally, Tables 5 and 6 show the

values of residual norm during iterations of three typical time step for the stress loading and displacement

loading cases, respectively. The reported values of residuals are also given corresponding to ten steps

loading per half cycle.

6.5. Necking of a circular bar

Necking phenomenon in a bar is a well-known test in nonlinear solid mechanics and has been considered

by many researchers (Hallquist, 1983; Simo, 1988b; Rodriguez-Ferran et al., 1997; Ponthot, 2002). A
circular bar, with a radius of 6.413 and 53.334 mm length, is subjected to uniaxial tension up to total axial

elongation of 14 mm (Fig. 17). For an ideal case of a perfect specimen, necking can start in any section of

Fig. 18. Necking of a circular bar; uniaxial hardening curve.

Table 7

Material properties for the necking of a circular bar

Young�s modulus 206.9 GPa

Poisson�s ratio 0.29

C1 168.6 GPa

r1 400

Scale function f ð1Þ ¼ 0:69� 0:21e�111 þ 0:161
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specimen. In order to replace such a problem with multiple solutions by a problem with unique solution a

geometric imperfection (1% radius reduction) is introduced to induce necking in the central part of the bar.

Fig. 18 shows how the endochronic model can be fitted to experimental data, reported by Simo (1988b),

which leads to the endochronic material parameters, given in Table 7.
Three different meshes, consisting of 50, 200 and 800 quadrilateral bilinear elements, corresponding to

one quarter of specimen have been considered, as shown in Fig. 19, in order to assess the accuracy of

discretization. The deformed finite element meshes after total 14 mm of axial elongation corresponding to

one quarter of the specimen are shown in Fig. 20. The contours of the Cauchy stress components rrr and rzz

for 800 elements mesh corresponding to 14 mm axial elongation are shown in Fig. 21. They are in good

agreement with those reported by Simo (1988b) and Ponthot (2002).

A comparison between experimental and some computed results of the ratio of the current to initial

radius at the necking section versus axial elongation is shown in Fig. 22. The result is in good agreement
with experimental and other computed results. The sensitivity of numerical solution to mesh refinement is

assessed in Fig. 23, where the necking ratio versus elongation is plotted for three meshes with 50, 200 and

800 elements. This figure corroborates the insensitivity of the numerical results to the mesh refinement. The

sensitivity of the solution with respect to time discretization is examined in Fig. 24. It is noted that the

results corresponding to 50 and 100 load steps are very similar, which confirms the accuracy of the inte-

gration scheme. In Tables 8 and 9, the computational efforts involved in the calculations are assessed. Table

8 summarizes the required number of iteration per load step for 50 element mesh. Also, the values of re-

sidual norm during iterations for two typical load steps are shown in Table 9.

Fig. 19. Necking of a circular bar; finite element meshes corresponding to one quarter of the specimen, consisting of 50, 200 and 800

elements.
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6.6. Strip in tension-shear banding

In the last example, the evolution of the shear band in a plane strain strip with strain softening endo-

chronic plasticity is investigated and the capability of endochronic viscoplastic model in providing the mesh

objective results is demonstrated. A strip is constrained at the bottom while a constant velocity of v ¼ 20

mm/s is imposed at the top, as shown in Fig. 25. The Endochronic strain softening plasticity is used with

material parameters given in Table 10. In order to avoid homogeneous solution, the width of specimen is

slightly increased toward the top, so that the shear band will be initiated at the bottom right of the
specimen. Two different meshes have been used with 200 and 400 bilinear quadrilateral plane strain ele-

ments.

It is well known that the strain softening will result in the mathematical ill posesness of field equations

(Khoei et al., 1997; Khoei et al., 2003d). Because no length scale is involved in the evolution of shear band,

the localization zone is confined to the size of element, which yields to mesh dependent results. Fig. 26

shows the displacement patterns and load deflection curves corresponding to two different meshes with

endochronic softening plasticity. It is evident from the displacement patterns that the width of shear band is

determined by the element size and the deformation is localized along a line of integration points. Also, the
mesh dependency is obvious from the load deflection curves. It should be noted that the large deformation

analysis can not solve the mesh dependency of solution. This lack of objectivity can be overcome by using

Fig. 20. Necking of a circular bar; finite element meshes after the total axial elongation of 14 mm corresponding to one quarter of the

specimen, consisting of 50, 200 and 800 elements.
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Fig. 22. Necking of a circular bar; the experimental and computed results of the ratio of current to initial radius at the section un-

dergoing extreme necking versus axial elongation.

Fig. 21. Necking of a circular bar; the contours of Cauchy stress components rrr and rzz for 800 element mesh.
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Fig. 23. Necking ratio versus axial elongation in necking of a circular bar; the sensitivity study of numerical calculation with respect to

mesh refinement.

Fig. 24. Necking ratio versus axial elongation in necking of a circular bar; the accuracy of the integration algorithm for different load

step sizes.

Table 8

Newton iterations per load step, Example 6.5

Step 1 2 3–4 5–7 8–13 14 15 16 17 18–21 22 23–30

Number of iterations 6 5 4 3 5 4 7 5 6 5 7 5
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Table 9

Residual norm for load steps 14 and 28, Example 6.5

Iteration Load step 14 Load step 28

1 2.98E+0 8.41E+0

2 1.71E)2 3.71E)1
3 7.70E)4 8.29E)2
4 2.03E)6 6.42E)3
5 1.41E)5

Table 10

Material properties for the strip in tension

Young�s modulus 30 000 MPa

Poisson�s ratio 0.3

C1 15 000 MPa

C2 1500 MPa

r1 10 000

r2 4000

Scale function f ð1Þ ¼ 10ð1� 101Þ

Fig. 25. Strip in tension; problem description.
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the rate dependent viscoplastic model introducing a length scale into initial value problem (Needleman,

1988). Endochronic material parameters given in Table 10 are used, but additionally a linear viscosity term

in the scale function is introduced:

f ð1; _11Þ ¼ 10ð1� 101 þ 0:0125 _11Þ ð78Þ

Fig. 26. Strip in tension; the mesh-dependent results with endochronic strain-softening plasticity; (a) load–deformation curves,

(b) displacement patterns.

Fig. 27. Strip in tension; the mesh objective results with endochronic viscoplastic model; (a) load–deformation curves, (b) displacement

patterns.
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Fig. 27 shows the displacement patterns and load deflection curves of two different meshes using the en-

dochronic viscoplastic model with scale function defined in (78). The finite width of the shear band and its

independency of the finite element size can be observed. Also, similar load–deflection curves can be ob-

served from two different meshes, which corroborates the mesh objectivity of results. Finally, contour plots
of the equivalent plastic strain using endochronic plasticity and endochronic viscoplastic models for two

different meshes are shown in Fig. 28.

Fig. 28. Strip in tension; the equivalent plastic strain contours; (a) endochronic plasticity model for total extension of 20 mm,

(b) endochronic viscoplastic model for total extension of 30 mm.
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7. Conclusions

In the present paper, a computational framework was presented for the finite strain endochronic

viscoplastic model, which is capable of accounting for both isotropic and kinematic hardening effects. The
elastic response was stated in terms of hypoelastic model and the endochronic plasticity constitutive

equations were stated in unrotated frame of reference. A trivially incrementally objective integration

scheme was established for the rate constitutive relations and the algorithmic modulus consistent with

numerical integration algorithm of constitutive equations was extracted. Numerical examples show a

quadratic rate of global convergence even in the case of complicated applied loading path and relatively

large load steps. The capability of the proposed model in simulation of cyclic loading and ratcheting in

finite strain is demonstrated. The implementation is validated by means of a set of simple deformation

paths and two benchmark tests in nonlinear mechanics. Finally, the analysis of a tensile test shows a shear
band with a finite thickness independent of the finite element mesh using endochronic viscoplastic con-

stitutive model.
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