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Abstract

This paper is concerned with objective stress update algorithm for elasto-plastic and elasto-viscoplastic endochronic
theory within the framework of additive plasticity. The elastic response is stated in terms of hypoelastic model and
endochronic constitutive equations are stated in unrotated frame of reference. A trivially incrementally objective in-
tegration scheme for rate constitutive equations is established. Algorithmic modulus consistent with numerical inte-
gration algorithm of constitutive equations is extracted. The implementation is validated by means of a set of simple
deformation paths (simple shear, extension and rotation), two benchmark test in nonlinear mechanics (the necking of a
circular bar and expansion of a thick-walled cylinder), a test which demonstrates the capabilities of the proposed model
in simulation of cyclic loading and ratcheting in finite strain case (cyclically loaded notched bar) and finally, the analysis
of a tensile test, which presents a shear band with a finite thickness independent of the finite element mesh using endo-
chronic viscoplastic constitutive model.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The main objective of this paper is the formulation and integration of the endochronic constitutive
equations for finite deformation metal plasticity and viscoplasticity. The endochronic theory deals with the
plastic response of materials by means of memory integrals, expressed in terms of memory kernels. For-
mulation of this theory is based on thermo dynamical concepts and provides a unified point of view to
describe the elastic—plastic behavior of material, since it places no requirement for a yield surface and
‘loading function’ to distinguish between loading and unloading. A key ingredient of the theory is that the
deformation history is defined with respect to a deformation memory scale called intrinsic time. In the
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original version of the endochronic theory, proposed by Valanis (1971a,b), the intrinsic time was defined as
the path length in the total strain space. The so-called endochronic theory violates the second law of
thermodynamics and leads to constitutive relations, which characterize inherently unstable materials
(Rivlin, 1981; Sandler, 1978). Aiming at the correction of this deficiency, a new version of the endochronic
theory was developed by Valanis (1980) in which the intrinsic time was defined as the path length in the
plastic strain space. The new endochronic plasticity was capable of predicting a stress-response to defor-
mation processes, including reversal points in loading in agreement with the experimentally observed
mechanical behavior of metals. Also, Valanis demonstrated that an introduction of Dirac delta function
into the kernel function leads to a derived result of a yield surface and classical plasticity models of isotropic
and kinematic hardening could be derived as a special case of the endochronic theory (Valanis, 1980).

Using original endochronic theory, as a point of departure, a method of extending endochronic theory to
concrete, clay and sand was proposed by Bazant and his coworkers (Bazant and Krizek, 1976; Bazant and
Bhat, 1976; Bazant et al., 1979) by introducing sensitivity of intrinsic time to hydrostatic pressure and
incorporating inelastic dilatancy due to shear strain. But the proposed approach has shortcomings of the
original endochronic theory mentioned above. An extension of the new endochronic theory to concrete and
sand was proposed by Valanis et al. (Valanis and Read, 1986; Valanis and Peters, 1991) and Wu et al.
(1985). Recently, Khoei and Bakhshiani (2001) and Khoei et al. (2002) developed an endochronic theory to
describe the behavior of metal powder in powder compaction processes.

The first implementation of an endochronic theory into a multi-dimensional finite element code was
made by Lin et al. (1981), who focused on the original endochronic theory with one term exponential for
the kernel function. An implicit finite element algorithm for the modern version of endochronic theory
without a yield surface was developed by Valanis and Fan (1984), which was incrementally nonlinear. Also,
Watanbe and Atluri (1985) presented an implicit finite element algorithm for the modern endochronic
theory. They used the endochronic plasticity with yield surface and the resulting constitutive equations were
incrementally linear. An unconditional stable integration scheme of endochronic constitutive equations was
proposed by Hsu et al. (1991) and Hsu and Griffin (1992) and its ability is examined in the modeling of
random non proportional tests on OFHC copper. Hsu and Griffin (1996) implemented radial return al-
gorithm in integration of endochronic constitutive equations and applied their formulation to finite element
micromechanics modeling of a unidirectional metal matrix composite subjected to nonproportional cyclic
loading.

The endochronic theory has also been extended to investigate the rate dependent behavior of materials.
Lin and Wu (1976) used original version of the endochronic theory and introduced a rate sensitivity
function, which was a function of total strain rate. Wu and Yip (1980) redefined the rate sensitivity function
of intrinsic time measure based on the new intrinsic time proposed by Valanis (1980) and discussed the
uniaxial stress—strain responses of 1100-O aluminum and mild steel at constant strain rate conditions. Wu
and Ho (1995) introduced another functional form for dependency of intrinsic time scale to the equivalent
deviatoric plastic strain rate and applied endochronic theory to investigate transient creep of material. A
new formulation of the rate sensitivity function was proposed by Pan and Chern (1997) to describe the
viscoplastic behavior of material subjected to multiaxial loading. Pan (1997) modified the rate sensitivity
function proposed by Pan and Chern (1997) and Pan et al. (1996) to incorporate with the finite endochronic
constitutive equations. For the case of study, the finite simple torsion of iron and nickle thin-walled tubes
were simulated with explicit constitutive equations. Pan et al. (1999) proposed a different formulation of the
scaling function of the intrinsic time measure, as suggested originally by Valanis (1975), to describe the
material behavior under rate dependent elastoplastic deformation. They used the differential endochronic
constitutive equations derived by Valanis (1984) to describe the material responses subjected to rate de-
pendent elastoplastic deformation.

The endochronic theory was extended to finite deformation with the concept of the corotational rate and
plastic spin by Im and Atluri (1987). They derived the governing equations by using the isoclinic configu-
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ration as the intermediate configuration and the corresponding second Piola-Kirchhoff stress tensor. Cases
of finite uniaxial compression and torsion were discussed in their work. Wu et al. (1995) incorporated the
concepts of corotational rate, corotational integral and plastic spin to endochronic theory and applied it to
description of rigid-plastic deformation in thin-walled tubes subjected to finite torsion. Pan et al. (1996)
extended the ordinary differential constitutive equations of endochronic theory to simulate elastoplastic
deformation in the range of finite strain using the concept of corotational rate. Different objective rates
were incorporated into the theory and cases involving metal tubes under torsion and metal rectangular
block under biaxial compression were discussed. Recently, an endochronic plasticity theory was developed
by Khoei et al. (2003a) and Bakhshiani et al. (2003) to describe the large deformation in finite strain using
the concepts of corotational stress rate and the additive decomposition of deformation rate. They derived
the constitutive equations for thin-walled tube under torsion to simulate the axial effects for various
materials subjected to simple and pure torsional loading. More recently, Bakhshiani et al. (2002a,b) and
Khoei et al. (2003b,c) developed a density-dependent endochronic theory based on coupling between de-
viatoric and hydrostatic behavior in finite strain plasticity to simulate the compaction process of powder
material.

In this paper, the infinitesimal theory of endochronic plasticity is extended to large strain range on the
basis of the additive decomposition of the strain rate tensor and hypoelasticity. This approach is rather
different with respect to the multiplicative decomposition of the deformation gradient, which is based on the
work of Lee (1969) and used in numerous recent papers (Simo, 1988a,b; Eterovic and Bathe, 1990; Eve and
Reddy, 1994; Fish and Shek, 2000; Ibrahimbegovic and Chorfi, 2000; Ponthot, 2002). The proposed in-
tegration algorithm treats the elastoplastic and the elasto-viscoplatic cases in a unified way. Constitutive
equations are stated in unrotated frame of reference that greatly simplifies endochronic constitutive rela-
tions in finite plasticity and yields the efficiency of the presented algorithm by total uncoupling material and
geometrical non linearities. An implicit scheme is employed in this article which is the efficient method for
the type of nonlinear problems considered in this paper (Ponthot, 2002; Simo, 1988b). An integration
scheme, which is accurate, stable and amenable to consistent linearization, is developed. Although the
major challenge in the integration of rate constitutive equations in large deformation analysis is to achieve
incremental objectivity, it has been trivially achieved in the proposed algorithm. Algorithmic modulus
consistent with numerical integration of constitutive equations for endochronic theory is extracted.
The implementation of consistent modulus in global tangent stiffness matrix is essential in preserving
the quadratic rate of convergence of Newoton procedure in solving the equilibrium equations (Simo
and Taylor, 1985). The efficiency of the proposed constitutive model and computational algorithms is
demonstrated by several numerical examples.

This paper is organized as follows: in Section 2, we describe the endochronic plasticity model. In Section
3, the implementation of endochronic plasticity model in large deformation is introduced. Section 4 is
devoted to numerical integration of constitutive equations. In Section 5, the consistent tangent modulus,
which has an important role in the convergence rate of global nonlinear system of equations, is extracted.
Section 6 is devoted to the assessment of the model and computational procedure. Finally, some concluding
remarks are made in Section 7.

2. Endochronic constitutive model

Constitutive equations of the endochronic theory for rate-dependent, plastically incompressible, initially
isotropic material is as follows:

deP

GeV:2/¢zfz' dZ 1
w=2 [ 0= m
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where @(z) is material function, called hereditary function. A time scale ‘¢’ is introduced which is inde-
pendent of elapsed time, but intrinsically dependent on the deformation of material. It is through this
parameter that history effects are introduced into constitutive equations of endochronic theory.

g = deP - de (2)
dg
¥ )

where (¢, ¢) denotes a material function, called scale function, which is a function of time scale ¢, and its
rate ¢. In order to describe the viscoplastic material behavior, the rate sensitivity is introduced in scale
function through rate of time scale. It should be mentioned that the so-called consistency viscoplastic model
(Wang et al., 1997) can be derived as special case of the proposed model by introducing Dirac delta
function to the hereditary function.

In above equations, the total stress tensor is denoted by ¢ and its deviatoric and hydrostatic parts by 64ey
and ay, respectively. The symbol € represent the total strain tensor by deviatoric and volumetric parts €gey
and &, respectively. The superscripts ‘e’ and ‘p’ indicate the elastic and plastic components, respectively.

As shown by Valanis (1980), the kernel function @(z) can be expressed in terms of a Dirichlet series, i.e.,

D(z) =Y A, (4)
r=1
with the requirements that 4, and o, are nonnegative for all values of #’, and the condition,
|
or 5
D <o (5)

r=1

This condition ensures the integrability of @(z) over a finite domain of time scale z’. In numerical appli-
cation, m-term Dirichlet series can be used as, (Hsu et al., 1991)

®(z) = iArefw (6)

The role of scale function (¢, ¢) is crucial in the behavior of model. By scaling intrinsic time, this function
causes hardening or softening plastic behavior as functions of time scale and its rate.

Although the yield surface has not been explicitly assumed in the endochronic theory, introducing Dirac
delta to kernel functions, results implicitly this concept (Valanis, 1980). The above endochronic model
contains various isotropic and kinematic hardening rules for special cases (Watanbe and Atluri, 1986),
depending on the choice of the scale function f(¢,¢) and the kernel @(z). Prager’s linear kinematic hard-
ening rule can be obtained if Dirac delta function and one constant term are used in kernel function. In-
troducing another exponential term to the kernel function results in the Armstrong and Frederick nonlinear
kinematic hardening rule.

3. Implementation in large deformation

In finite deformation plasticity, there are generally two approaches. The first class of methods is based on
hyperelastic—plastic relations, multiplicative elastic—plastic kinematics and the existence of Helmholtz free
energy density governed by either elastoplastic deformation (Nemat-Nasser, 1979; Simo, 1988a), or elastic
deformation solely (Eve and Reddy, 1994). The second class of methods is based on hypoelastic—plastic
relations, additive decomposition of rate of deformation and the use of objective stress rates. Even though
this formulation is very attractive from the computational point of view (Belytschko, 1983; Ponthot, 2002),
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it is limited to small elastic strain in which the hypothesis of hypoelasticity is valid. This approach is ap-
propriate for most engineering materials, including metals, where elastic strain remains small.

In this section, the hypoelasto-plastic formulation is presented in the context of finite deformation
problem involving large strain. The constitutive model is stated in the unrotated frame of reference
(Johnson and Bammann, 1984; Fish and Shek, 2000; Ponthot, 2002), in which it is simple to achieve in-
cremental objectivity and also in the unrotated reference frame all constitutive models are cast regardless of
finite rotations. This greatly simplifies the numerical implementation of endochronic constitutive model.

3.1. Kinematics
A material point in reference configuration 2, with position vector X occupies position x at time ¢ in

deformed configuration Q. So we have x = ¢(X,¢). The motion from the original configuration to the
deformed configuration has the deformation gradient F given by

Ox
F= X (7)
Applying polar decomposition theorem to F
F=VR=RU (8)

where V and U are the left and right symmetric, positive definite stretch tensors, respectively, and R is a
proper orthogonal tensor. The velocity gradient is denoted by L. and may be expressed as

LR

L= =FF )
_do(X,1)

V=g (10)

The velocity gradient can be written in terms of symmetric D and antisymmetric W parts, respectively,
called rate of deformation ant spin tensors, as

L=D+W (11)
The unrotated rate of deformation tensor used in the next sections is defined as,
D =R'DR (12)

The finite elastoplastic kinematics, which we use in this study, is based on additive decomposition of rate of
deformation as (Nemat-Nasser, 1982),

D=D°+DP (13)
or in unrotated frame as,

D = D° + DP (14)
3.2. Hypoelastic—viscoplastic constitutive equations

Hypoelastic material law relates the rate of stress to the rate of deformation. A general form of the
hypoelastic relation is given by
¢’ =f(6,D) (15)

where ¢V represents any objective rate of Cauchy stress.
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In literature many objective rates are introduced, such as: Jaumann, Truesdell and Green-Naghdi rates.
Dienes (1979) has shown that there is spurious oscillation in the stress, which arises directly from the nature
of the Jaumann rate. Vanishing of Truesdell rate does not ensure that the invariants of Cauchy stress tensor
are constant (Johnson and Bammann, 1984), so in this case further plastic flow will exist. In this formu-
lation, the constitutive model is posed in terms of Cauchy stress in unrotated configuration (Johnson and
Bammann, 1984), as

6 =R'6R (16)

The conjugate strain rate to 6 is D defined in Eq. (12). So the hypoelastic part of constitutive equation is

C*: D¢ (17)

-
Il

D=D°+D" (18)
where C° is the Hook stress—strain tensor given as

C?jkl = K55j5k1 +2u (51'/(511 - %51']5/(/) (19)
where K and p are the bulk and shear modulus of material, respectively.

In order to complete the hypoelasto-viscoplastic constitutive equation in the context of finite defor-
mation plasticity, the endochronic constitutive equations in unrotated frame is presented as follows:

z ﬁp
Ggey = 2/ Oz —7)—-d7 (20)
0 A
S
z= - 21
f(,9) @

2 =DP:DP (22)
where

6= &dev + &hI (23)

Odev — deV[&} (24)

oy = 1itr[6] (25)
and dev[-] = [-] — itr[]I with I as spatial metric tensor.

4. Numerical integration of constitutive equations

The major challenge in the integration of the rate constitutive equations in finite strain context is to
achieve incremental objectivity. Using objective stress rates in constitutive equations results in objective
formulation only in the limit of very small time step (Hughes and Winget, 1980). While the standard time
discretization procedures do not lead in incremental objectivity, one efficient way to overcome this problem
is to state constitutive equations in corotational frame. Assuming that the variables of the model at step n
and the incremental displacement field Au = "*!'x — "x at load step n + 1 are known, the update of different
variables of the model at load step n+ 1 is done as described. The left superscript refers to load step.
Subsequently, the left superscript is omitted for current step.
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Using polar decomposition F = RU, relations (9) and (12) leads to

D=R'DR=LUU"' +U ') (26)
Midpoint rule results to
~ 1 1
DA = (AU 2U! +"2U'AU) (27)
1
where AU and ""2U in the above relation are
AU — n+lU _ nU (28)
U — 11U 4+ "0) (29)

The corotational increment of D is given as,

Ad = AD = {AU™2U! + 72U AU) (30)
Applying the backward Euler scheme to Eq. (17) yields

6="6-+C:DAr (31)

A = C°: Ad° = C° : (Ad — AdP) (32)

The other part of numerical scheme is the numerical integration of endochronic constitutive equations.
Substituting Eq. (6) to (20), gives

~ - ’ —a,(z—2') ﬁp /
Cdey = 221: ; A.e 7(12 (33)

In order to integrate Eq. (33) numerically, the loading is divided into = steps, thus

. " A, "(A&p) 0k ny_k-1

Ggev(nz) =2 - [eiar( ) — ei%( >] (34)
; o KAz

Gdev Z Gdev (35)

It is worth mentioning that the striking feature of the above scheme is the direct integration of hereditary

function. Such a procedure, in general leads to more accurate results with much smaller number of in-

crements, and results in an exact solution to endochronic equations, if the material has no hardening effect

and the deformation process traces a piecewise linear path in the plastic strain space (Hsu et al., 1991).
Eq. (34) can be simplified as

,"(Ad%)

8 '2) = 8 (2 4 20 L)

(1—e") (36)

Incremental form of endochronic constitutive equations can be obtained from Eq. (36) by taking step n + 1
as current step. The incremental equations needed in the numerical modeling of initial strain are as follows

AGyey = i"(é‘gev)(e’“"& 1)+ 2% Z 2 (] — e 37)

r=1 r=1
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AGuey = 21(Ad — AdP) (38)

A = AdP : AdP (39)
A,\

- (40)

FUe+ pAcE)
where f is a parameter with the condition f# > 1/2. Although this set of six algebraic equations can be
solved for the unknowns (Ad”) by applying the Newton-Raphson method, however, more efficient nu-

merical scheme can be devised by making a few algebraic manipulations. Substituting A6, from (38) to
(37) yields

. m Adp m A §
_ n(ar —opAz _ =" “ar _ 70(,
2uAd Z CABIC N=2—+ (Zl (1 ) + qu) (41)
Taking inner product of (41) with itself, results
Ad?
) AC
A:A=B e (42)
where
1 BN ~r —0t
Alj = :uAdij - 5 Zln(cdev)ij(e ks 1) (43)
and
B = uA —orhz 44
p Z+; (=) (44)
Substituting (40) into (42) gives
An
R(Ac)=A:A—-Bf’ (”g—i—ﬁAg,K;) =0 (45)

The above equation can be solved for Ag by the Newton—Raphson technique using the following expression
for derivative of residual with respect to unknown, Ag

OR  _0A of

= :A—-21B 46
o~ Caag AT ( 3A: ) (46)
A 10Az & N
Il n(ar — 0l 4
GAg 2 6Ag ; ar(cdev)e ( 7)
0B 0Az LI
e = 7Ac ( + Z Cee ) (48)
o6 1A oS )

A [ f?0Ac

of ("s+PACK) _ 0 1O
oAz % "M (50)
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Once Eq. (45) is solved for Ag, Az can be obtained from (40) and AdP from Eq. (41). Then the corotational
increment of stress tensor is derived from Eq. (32). Stress is then calculated from relations ¢ = "6 + Aé and
¢ = RéR".

It can be seen from Eq. (27) that the proposed scheme is trivially incrementally objective. In the case of
rigid body motion, "*'U = "U and from Eq. (27) D = 0, thus stress tensor will be updated exactly by re-
lation "*'6 = AR"6AR”. Tt should be mentioned that in this scheme the rotation tensor R is exactly
computed from the polar decomposition and not from the numerical integration of rate equation o = Qu,
with Q denoting a spin tensor and o indicating an orthogonal rotation tensor.

5. Consistent tangent operator

In order to achieve the quadratic rate of convergence of Newton method for solution of global nonlinear
system of equations, it is essential to use tangent modulus consistent with integration procedure of con-
stitutive equations in forming tangent stiffness matrix (Simo and Taylor, 1985). In this section, the incre-
mental constitutive equations derived in previous section are linearized to yield consistent tangent modulus.

Taking material time derivative of Eq. (37) yields

Aégey = Hi Az + HoAd (51)
where
A m
H, = 2— ZA e A 2—d 4, (1—e7™) = > 0" (6, ) ™ (52)
r=1 O r=1
Hy =+ Z . a2 (53)
Taking materlal time derivative of (40) yields
. 1 of  19f .
As— (258 A 54
(-7 s as) ) 5
where A¢ can be obtained by taking time derivative from Eq. (39) which yields,
A = LAdp Ad° (55)

Substituting Eqs. (54) and (55) to (51) yields

AGyey = CP : Ad” (56)
where

Ch = ! (%—F( f+A1t2f))H ® Ad® + Hb1 (57)
Taking time derivative of (23) and using (19), (38) and (56) by straightforward calculation yields,

§6=C":Ad (58)
where

-1
Cc’'=cC (1 — (i C’+ I) IdeV> (59)
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and
di
I,:,«z = %(511(5;1 + 0udj) — %51';51{1 (60)

In order to complete derivation of consistent modulus, linearization of "*'R and Ad is needed. For con-
sistent linearization of "+'R, we start by relation,

L =FF ' =RR" + RUU 'R" (61)
Pre-multiplying Eq. (61) with R" and post-multiplying with F yields,

R'LF =R'RU+ U (62)
Subtracting (62) from its transpose after some manipulation results in

R=G:L (63)
where

G = RiUs — Ry U) " (RinFiy — R Foy) (64)
Substituting (63) to (62) gives U in terms of L as follows,

U=H:L (65)
where

Hi = (RgF; — R, U, G (66)
In order to evaluate A:i appearing in Eq. (58) consistent with integration scheme, relation (30) is used,

d=P:."U0 (67)
where

Py = %(’”%U,jjl S+ "%Uiyja i — %AU,—m"%U,;;”%Ujjl —1AU, ,"%U,.;l”*%U;,}) (68)

Substituting (65) to (67) yields,

d=H:L (69)
where H is a forth-order tensor given as

H=P: H (70)
Substituting Eq. (69) into Eq. (58) yields

6=C:L (71)
where

Cijn = éz‘m,,,ﬁmnkl (72)

Combining Egs. (63) and (71) and 6 =R'6R + R"6R + R"6R yields

Cijkl = Rim CmnklR/'n - Rim Gnmklcnj — Oin Gmnk[Rjn (74)



A.R. Khoei et al. | International Journal of Solids and Structures 40 (2003) 3393-3423 3403

6. Numerical simulation examples

In this section, several numerical simulations are presented to study the performance of the proposed
formulation. The finite element mesh employed in all simulations is four-node isoparametric elements with
bilinear displacement interpolation and constant pressure to handle the isochoric nature of plastic flow. The
convergence criterion used is based on the relative value of norm of residual forces to norm of applied
forces. Unless otherwise stated, the convergence tolerance is set to 107* and f is set to 1/2.

6.1. Simple shear test

The first example is chosen to examine the behavior of model and accuracy of the numerical integration
scheme in the case of large deformation. The problem statement for the simple shear test is shown in Fig. 1.
Both elastic and elastoplastic behaviors are considered. The equations describing the motion of the con-
tinuum are

x(t) =X+ 1t

75

) =Y 73)
Elastic behavior is represented by Young’s modulus of 2000 and Poisson’s coefficient of 0.3. Figs. 2 and 3
present the results for the elastic case. The results of hypoelastic model with Green-Naghdi and Jaumann
rates are also depicted for comparison. Both mid-point and fully implicit algorithms yield to sufficiently
accurate results for shear strain response in relatively large increment (50% shear strain in each increment).
Fully implicit algorithm grossly underestimates o,, component when not enough increments are employed,
and demands a smaller strain increment to get accurate solution.

Endochronic plasticity model with kernel function parameters of C; = 2000, C, = 200, r; = 100, r, = 10
and scale function of f(¢) = 1 + (¢/10) is employed for simulation of elastoplastic behavior. Mid-point
numerical integration algorithm is used for this case. Fig. 4 shows shear stress response versus shear strain
for three different time steps. It can be seen from this figure that the proposed integration algorithm results
in acceptable solutions even in the case of large prescribed strain increments. Taking the solution at 5000
time steps, as the exact solution, the error in final shear stress corresponding to shear strain of 5 is com-
puted and plotted versus the number of time increments in Fig. 5. From this figure, the second-order ac-
curacy of the integration algorithm is corroborated.

yA

=0 =5

Fig. 1. Simple shear test; problem statement.
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Fig. 2. Simple shea:

r test; the stress component o, versus shear strain in elastic analysis.
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Fig. 3. Simple shear test; the stress component o,, versus shear strain in elastic analysis.

6.2. Extension and rotation test

In second example, a combined extension and rotation of an element is considered to illustrate the
behavior of the kinematic algorithm and accuracy of the proposed integration scheme in the case of small
deformation combined with large rigid body rotation. This example was made by Rashid (1993) to show
that the algorithm of Hughes and Winget (1980) is the only weakly objective, which can cause unintended
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Fig. 4. Simple shear test; the shear stress versus shear strain in elasto-plastic analysis.

Relative error
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f=1
IS
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20 30 40
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50

Fig. 5. Simple shear test; the error in final value of shear stress versus number of time steps in elasto-plastic analysis.

coupling between the rotational part of the motion and the stress update, whenever large rotational in-
crements are present. This characteristic can cause inaccurate results in the case of large rotational incre-

ments.

The problem statement for this example is shown in Fig. 6. A unit square simultaneously undergoes a
uniaxial extension of 0.005 and a total superposed rigid rotation of 90°. The equations of motion are
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Fig. 6. Extension and rotation test; problem statement.
T . V4
x(¢) = X (1 + 0.005¢) cos(it) - Ysm(zt)
N 7 (76)
(1) = X (1 + 0.005¢) sm(§t> +Y cos(E t)
and the analytical solution is
Et
X = TAn 1 o\ 1 t
c 400(1_v2)( + cosit)
Et
= (1 - t
% = 30001 vy (| T e0s ™) (77)
Et it
0y =——————8INn
7 400(1 —v?)
300
Analytical Solution
O Numerical Solution -4 steps
X Numerical Solution -2 steps
250
200
bx" 150
100
50
O L L L
0 0.25 0.5 0.75 1 1.25
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Fig. 7. Extension and rotation test; the stress component o,, versus time.



A.R. Khoei et al. | International Journal of Solids and Structures 40 (2003) 3393-3423 3407

350 Analytical Solution
O Numerical Solution -4 steps
X Numerical Solution -2 steps
300
250
200 -
>
o)
150 |
100 -
50
0 L L L
0 0.25 0.5 0.75

Time

Fig. 8. Extension and rotation test; the stress component oy, versus time.
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Fig. 9. Expansion of a thick-walled cylinder; geometry and initial mesh.

Table 1

Material properties for the thick-walled cylinder
Young’s modulus 11050 MPa
Poisson’s ratio 0.454
C 180000 MPa
C, 90000 MPa
2 30000
” 10000
Scale function f(¢) =0.0148

The material Young’s modulus E is taken as 200 000 and the Poisson’s ratio is 0.2. The elastic behavior is
only parameter considered here. The results of this example are shown in Figs. 7 and 8. It is clear that the
predictions of the proposed algorithm agree with analytical values for large incremental rotation, even up
to 45°.
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Fig. 10. Expansion of a thick-walled cylinder; the internal pressure versus inner radius.

6.3. Expansion of a thick-walled cylinder

The next example is one of the most popular benchmarks for validating finite plasticity formulation
(Simo, 1988b; Fish and Shek, 2000; Ponthot, 2002). A thick-walled cylinder with an inner radius of 10 units
and an outer radius of 20 units is subjected to internal pressure. This problem is solved using 20 bilinear
axisymmetric elements. The convergence tolerance used for this example is 1077, Fig. 9 shows the finite
element mesh and configuration of the cylinder. The inner radius is driven to a value of 90 in ten load steps.
The endochronic material parameters, given in Table 1, are chosen to simulate the rigid-plastic behavior
with the yield stress of 0.5 MPa allowing a comparison with analytical solution.

Fig. 10 shows the relationship between the inner radius and internal pressure. The radial stress profile
versus position through current thickness of the cylinder is shown in Fig. 11. It can be seen that the nu-
merical results are in good agreement with the analytical solution. Newton iterations per load step and

0.00

-0.02

-0.04

-0.06
o  Computed

-0.08 — Analytical

-0.10

Radial Stress Profile

-0.12

-0.14

-0.16

1 2 3 4 5 6 7 8 9 10

Thickness in Current Configuration

Fig. 11. Expansion of a thick-walled cylinder; the radial stress versus position relative to inner radius corresponding to several con-
figurations.
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Table 2
Newton iterations per load step, Example 6.3
Step 1 2 3 4 5-6 7 8-10
Number of iterations 9 8 7 6 5 6 5
Table 3
Residual norm for load steps 4 and 8, Example 6.3
Iteration Load step 4 Load step 8
1 1.69E+03 3.20E+03
2 2.15E+01 2.43E+01
3 2.54E-01 1.23E-01
4 2.75E-03 6.23E-04
5 2.94E-05 8.37E-08
6 2.47E-08

values of residual norm during iterations of two typical time steps are given in Tables 2 and 3, respectively,
which demonstrate the quadratic rate of asymptotic convergence.

6.4. Cyclically loaded notched bar

This example is chosen to demonstrate the capabilities of endochronic plasticity in simulation of cyclic
loading and ratcheting. An axisymmetric notched bar is subjected to cyclic displacement and stress load-
ings. The geometry and finite element mesh of the problem are shown in Fig. 12. This example was con-
sidered by Kobayashi and Ohno (2002) to show the behavior of a new form of kinematic hardening

12] : o, or u,
o
10/
Ol
O
O
&
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I~ O
£
S 6
\‘\;’ )
4] g \
d\ .
21 [ NN
A \
o]
0 R e

r(mm)

Fig. 12. Geometry, finite element mesh and boundary condition of notched bar subjected to cyclic loading.
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Fig. 13. Cyclically loaded notched bar; cyclic loading diagram and increment of applied axial stress.

Table 4
Material properties for the cyclically loaded notched bar
Young’s modulus 165000 MPa
Poisson’s ratio 0.3
C 200000 MPa
G 4000 MPa
Cs 800 MPa
7 50000
) 1000
r 50
Scale function f(¢)=35
1200
1000
800
=
S o0
z
g 400
3
=
£ 200
<
04
-200 50-step loading
* 10-step loading
_ ! ! ! ! 1 !
4000 0.05 0.1 0.15

Logarithmic axial strain

Fig. 14. Notched bar subjected to cyclic stress loading; the axial stress versus strain relation at the integration point near notch root.
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Fig. 15. Cyclically loaded notched bar; cyclic loading diagram and increment of applied axial displacement.
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Fig. 16. Notched bar subjected to cyclic displacement loading; the axial stress versus strain relation at the integration point near notch root.

Table 5
Residual norm-stress loading, Example 6.4

Iteration Last increment of third cycle Tenth increment of fourth cycle First increment of fifth cycle
1 1.64E+1 7.29E+1 2.20E+3
2 6.41E-1 3.83E-3 9.34E+2
3 2.08E-2 2.61E-6 2.70E+0
4 1.12E-4 3.83E-3
5 7.40E-7
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plasticity in small displacement context. Fig. 13 illustrates the variation of applied stress with the number of
cycles. The increment of applied stress is prescribed to allocate ten and fifty steps per half a cycle. Endo-
chronic material parameters used for simulation are given in Table 4. Using a constant scale function
suppresses, the isotropic hardening of model and three terms of kernel function are enough to simulate a

nonlinear kinematic hardening behavior.

Table 6
Residual norm-displacement loading, Example 6.4

Iteration Last increment of third cycle Tenth increment of fourth cycle First increment of fifth cycle
1 1.06E+0 2.15E+0 6.84E+4
2 1.06E-2 1.57E-2 5.68E+2
3 9.45E-5 5.60E-5 6.50E+0
4 1.52E-1
5 1.08E-2
6 1.82E-5
6.413 mm

g

g

o~

L

\O

N

N &

6.350 mm

Fig. 17. Necking of a circular bar; problem description.
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Fig. 14 shows the computed axial stress—strain relations at the integration point near the notch root. The
capability of the endochronic model to simulate ratcheting is clear from the figure. Also, using only ten
stress increments gives accurate results for such a complicated loading history. Fig. 15 shows cyclic loading
diagram and the increment of applied displacement at the top of the specimen. Axial stress versus strain
relation at the integration point near notch root is shown in Fig. 16. Similar to the previous loading case,
ten steps loading per half a cycle is sufficient to obtain an accurate result. It is worth mentioning while the
concepts of the yield surface and loading-unloading criteria have not been assumed in the endochronic
plasticity, the model can effectively simulate unloading and cyclic loading. Finally, Tables 5 and 6 show the
values of residual norm during iterations of three typical time step for the stress loading and displacement
loading cases, respectively. The reported values of residuals are also given corresponding to ten steps
loading per half cycle.

6.5. Necking of a circular bar

Necking phenomenon in a bar is a well-known test in nonlinear solid mechanics and has been considered
by many researchers (Hallquist, 1983; Simo, 1988b; Rodriguez-Ferran et al., 1997; Ponthot, 2002). A
circular bar, with a radius of 6.413 and 53.334 mm length, is subjected to uniaxial tension up to total axial
elongation of 14 mm (Fig. 17). For an ideal case of a perfect specimen, necking can start in any section of

0.9
-

0.8 I

0.7
0.6

0.5

Stress

04
03F ] Experiment
Endochronic model

0.2

0.1

0 0.25 0.5 0.75 1
Plastic Strain

Fig. 18. Necking of a circular bar; uniaxial hardening curve.

Table 7

Material properties for the necking of a circular bar
Young’s modulus 206.9 GPa
Poisson’s ratio 0.29
G 168.6 GPa
r 400

Scale function 7(2) =0.69 — 0.21e " 4 0.16¢
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specimen. In order to replace such a problem with multiple solutions by a problem with unique solution a
geometric imperfection (1% radius reduction) is introduced to induce necking in the central part of the bar.
Fig. 18 shows how the endochronic model can be fitted to experimental data, reported by Simo (1988b),
which leads to the endochronic material parameters, given in Table 7.

Three different meshes, consisting of 50, 200 and 800 quadrilateral bilinear elements, corresponding to
one quarter of specimen have been considered, as shown in Fig. 19, in order to assess the accuracy of
discretization. The deformed finite element meshes after total 14 mm of axial elongation corresponding to
one quarter of the specimen are shown in Fig. 20. The contours of the Cauchy stress components g, and o,
for 800 elements mesh corresponding to 14 mm axial elongation are shown in Fig. 21. They are in good
agreement with those reported by Simo (1988b) and Ponthot (2002).

A comparison between experimental and some computed results of the ratio of the current to initial
radius at the necking section versus axial elongation is shown in Fig. 22. The result is in good agreement
with experimental and other computed results. The sensitivity of numerical solution to mesh refinement is
assessed in Fig. 23, where the necking ratio versus elongation is plotted for three meshes with 50, 200 and
800 elements. This figure corroborates the insensitivity of the numerical results to the mesh refinement. The
sensitivity of the solution with respect to time discretization is examined in Fig. 24. It is noted that the
results corresponding to 50 and 100 load steps are very similar, which confirms the accuracy of the inte-
gration scheme. In Tables 8 and 9, the computational efforts involved in the calculations are assessed. Table
8 summarizes the required number of iteration per load step for 50 element mesh. Also, the values of re-
sidual norm during iterations for two typical load steps are shown in Table 9.

Fig. 19. Necking of a circular bar; finite element meshes corresponding to one quarter of the specimen, consisting of 50, 200 and 800
elements.
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Fig. 20. Necking of a circular bar; finite element meshes after the total axial elongation of 14 mm corresponding to one quarter of the
specimen, consisting of 50, 200 and 800 elements.

6.6. Strip in tension-shear banding

In the last example, the evolution of the shear band in a plane strain strip with strain softening endo-
chronic plasticity is investigated and the capability of endochronic viscoplastic model in providing the mesh
objective results is demonstrated. A strip is constrained at the bottom while a constant velocity of v = 20
mm/s is imposed at the top, as shown in Fig. 25. The Endochronic strain softening plasticity is used with
material parameters given in Table 10. In order to avoid homogeneous solution, the width of specimen is
slightly increased toward the top, so that the shear band will be initiated at the bottom right of the
specimen. Two different meshes have been used with 200 and 400 bilinear quadrilateral plane strain ecle-
ments.

It is well known that the strain softening will result in the mathematical ill posesness of field equations
(Khoei et al., 1997; Khoei et al., 2003d). Because no length scale is involved in the evolution of shear band,
the localization zone is confined to the size of element, which yields to mesh dependent results. Fig. 26
shows the displacement patterns and load deflection curves corresponding to two different meshes with
endochronic softening plasticity. It is evident from the displacement patterns that the width of shear band is
determined by the element size and the deformation is localized along a line of integration points. Also, the
mesh dependency is obvious from the load deflection curves. It should be noted that the large deformation
analysis can not solve the mesh dependency of solution. This lack of objectivity can be overcome by using
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Fig. 21. Necking of a circular bar; the contours of Cauchy stress components o, and o, for 800 element mesh.
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Fig. 22. Necking of a circular bar; the experimental and computed results of the ratio of current to initial radius at the section un-
dergoing extreme necking versus axial elongation.
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Fig. 23. Necking ratio versus axial elongation in necking of a circular bar; the sensitivity study of numerical calculation with respect to

mesh refinement.
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Fig. 24. Necking ratio versus axial elongation in necking of a circular bar; the accuracy of the integration algorithm for different load

step sizes.

Table 8

Newton iterations per load step, Example 6.5
Step 1 2 34 5-7 8-13 14 15 16 17 18-21 22 23-30
Number of iterations 6 5 4 3 5 4 7 5 6 5 7 5
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Table 9

Residual norm for load steps 14 and 28, Example 6.5
Iteration Load step 14 Load step 28
1 2.98E+0 8.41E+0
2 1.71E-2 3.71E-1
3 7.70E-4 8.29E-2
4 2.03E-6 6.42E-3
5 1.41E-5

v=20 mm/s
A S N
! 10.5
LD mm

20 mm

10 mm

Fig. 25. Strip in tension; problem description.

Table 10

Material properties for the strip in tension
Young’s modulus 30000 MPa
Poisson’s ratio 0.3
C 15000 MPa
G, 1500 MPa
r 10000
r 4000

Scale function f(¢) =10(1 —10¢)
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the rate dependent viscoplastic model introducing a length scale into initial value problem (Needleman,
1988). Endochronic material parameters given in Table 10 are used, but additionally a linear viscosity term
in the scale function is introduced:

f(g,¢) = 10(1 — 10¢ + 0.0125¢)

(78)
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Fig. 26. Strip in tension; the mesh-dependent results with endochronic strain-softening plasticity; (a) load—deformation curves,
(b) displacement patterns.
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Fig. 27. Strip in tension; the mesh objective results with endochronic viscoplastic model; (a) load-deformation curves, (b) displacement
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Fig. 27 shows the displacement patterns and load deflection curves of two different meshes using the en-
dochronic viscoplastic model with scale function defined in (78). The finite width of the shear band and its
independency of the finite element size can be observed. Also, similar load—deflection curves can be ob-
served from two different meshes, which corroborates the mesh objectivity of results. Finally, contour plots
of the equivalent plastic strain using endochronic plasticity and endochronic viscoplastic models for two
different meshes are shown in Fig. 28.

Oe
0.167 0.345
0.151 0.313
0.135 0.281
0.119 0.249
0.103 0.217
0.087 0.185
0.071 0.153
0.055 0.121
0.039 0.089
0.023 0.057
0.007 0.025
Oc
0.073 0.088
0.069 0.081
0.063 0.074
0.058 0.067
e
0.042 0.054
0.037 0.047
0.032 - 0.040
0.026 0.033
0.021 0.026
0.016 0.019
0.010 0.012
0.005 0.005

Fig. 28. Strip in tension; the equivalent plastic strain contours; (a) endochronic plasticity model for total extension of 20 mm,
(b) endochronic viscoplastic model for total extension of 30 mm.
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7. Conclusions

In the present paper, a computational framework was presented for the finite strain endochronic
viscoplastic model, which is capable of accounting for both isotropic and kinematic hardening effects. The
elastic response was stated in terms of hypoelastic model and the endochronic plasticity constitutive
equations were stated in unrotated frame of reference. A trivially incrementally objective integration
scheme was established for the rate constitutive relations and the algorithmic modulus consistent with
numerical integration algorithm of constitutive equations was extracted. Numerical examples show a
quadratic rate of global convergence even in the case of complicated applied loading path and relatively
large load steps. The capability of the proposed model in simulation of cyclic loading and ratcheting in
finite strain is demonstrated. The implementation is validated by means of a set of simple deformation
paths and two benchmark tests in nonlinear mechanics. Finally, the analysis of a tensile test shows a shear
band with a finite thickness independent of the finite element mesh using endochronic viscoplastic con-
stitutive model.
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